• 您所在的位置: 首頁 > 新聞百科 > 行業資訊

    人臉識別技術發展

    發布者:九竹物聯技術有限公司 發布時間:2020-5-7 10:47:36 點擊次數:744 關閉
    早在20世紀50年代,認知科學家就已著手對人臉識別展開研究。20世紀60年代,人臉識別工程化應用研究正式開啟。當時的方法主要利用了人臉的幾何結構,通過分析人臉器官特征點及其之間的拓撲關系進行辨識。這種方法簡單直觀,但是一旦人臉姿態、表情發生變化,則精度嚴重下降。
    1991年,著名的“特征臉”方法[1]第一次將主成分分析和統計特征技術引入人臉識別,在實用效果上取得了長足的進步。這一思路也在后續研究中得到進一步發揚光大,例如,Belhumer成功將Fisher判別準則應用于人臉分類,提出了基于線性判別分析的Fisherface方法。

    21世紀的前十年,隨著機器學習理論的發展,學者們相繼探索出了基于遺傳算法、支持向量機(Support Vector Machine, SVM)、boosting、流形學習以及核方法等進行人臉識別。 2009年至2012年,稀疏表達(Sparse Representation)因為其優美的理論和對遮擋因素的魯棒性成為當時的研究熱點。


    與此同時,業界也基本達成共識:基于人工精心設計的局部描述子進行特征提取和子空間方法進行特征選擇能夠取得最好的識別效果。Gabor[4]及LBP[5]特征描述子是迄今為止在人臉識別領域最為成功的兩種人工設計局部描述子。這期間,對各種人臉識別影響因子的針對性處理也是那一階段的研究熱點,比如人臉光照歸一化、人臉姿態校正、人臉超分辨以及遮擋處理等。也是在這一階段,研究者的關注點開始從受限場景下的人臉識別轉移到非受限環境下的人臉識別。LFW人臉識別公開競賽在此背景下開始流行,當時最好的識別系統盡管在受限的FRGC測試集上能取得99%以上的識別精度,但是在LFW上的最高精度僅僅在80%左右,距離實用看起來距離頗遠。
    2013年,MSRA的研究者首度嘗試了10萬規模的大訓練數據,并基于高維LBP特征和Joint Bayesian方法[6]在LFW上獲得了95.17%的精度。這一結果表明:大訓練數據集對于有效提升非受限環境下的人臉識別很重要。然而,以上所有這些經典方法,都難以處理大規模數據集的訓練場景。
    2014年前后,隨著大數據和深度學習的發展,神經網絡重受矚目,并在圖像分類、手寫體識別、語音識別等應用中獲得了遠超經典方法的結果。香港中文大學的Sun Yi等人提出將卷積神經網絡應用到人臉識別上[7],采用20萬訓練數據,在LFW上第一次得到超過人類水平的識別精度,這是人臉識別發展歷史上的一座里程碑。自此之后,研究者們不斷改進網絡結構,同時擴大訓練樣本規模,將LFW上的識別精度推到99.5%以上。如表1所示,我們給出了人臉識別發展過程中一些經典的方法及其在LFW上的精度,一個基本的趨勢是:訓練數據規模越來越大,識別精度越來越高。如果讀者閱讀有興趣了解人臉識別更細節的發展歷史,可以參考文獻

    企業分站:

    友情鏈接

    久久大香萑太香蕉av不卡|精品无码国产自产在线观看|精品国产一区二区国产馆|蜜芽亚洲av无码一区二区三区 97精品国产自产在线观看直播|日本一区二区三区高清无卡|91麻豆免费免费国产观看|热热久久超碰AV热热久久 欧美日韩中一卡2卡三卡4卡网站 99久久久国产精品尤物免费|日韩精品无码成人专区|国产伦精品一区二区三区视频女|久久精品一区二区曰韩Av